Course Syllabus

Course: CM5100 Applied Mathematics for Chemical Engineers

Instructor: Dr. Tomas Co. Chem-Sci 202G, Tel: 487-2144, Email: tbco@mtu.edu

References:

- 1. V.G. Jenson and G. V. Jeffreys, Mathematical Methods in Chemical Engineering, Academic Press, 1977
- 2. G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986
- 3. N. Amundson and R. Aris, Mathematical Methods in Chemical Engineering, Prentice Hall, 1966
- 4. J. Friedly, Dynamic Behavior of Processes, Prentice Hall, 1972
- 5. H. Mickley, T. Sherwood and C. Reed, Applied Mathematics in Chemical Engineering, McGraw Hill, 1957
- 6. D. Zwillinger, Handbook of Differential Equations, Academic Press, 1998
- 7. C.R. Wylie and L.C. Barnett, Advanced Engineering Mathematics, McGraw Hill, 1995
- 8. R.L. Burden and J.D. Faires, Numerical Analysis, Prindle, Weber & Smith, 1985

Requirements:

- 1. Assignments: 60 pts
- 2. Exams: 40 pts

Grades:

100	- 90	Α
89.99	- 80	AB
79.99	- 70	В
69.99	- 65	BC
64.99	- 60	С
59.99	- 55	CD
54.99	- 50	D
49.99	- 0	F

Course Outline

I.	Μ	atrix and Vector Theory	
	a.	Review of Matrices - Matrix Operations - Solution of Ax=b	1
		Least Squares MethodEigenvalues and Eigenvectors	2 3
	b.	 Vector and Tensor Analysis Notations and Operations Curvilinear Coordinates Integral Theorems 	4 5
II.	O	rdinary Differential Equations	
	a.	 Review of Solutions of ODEs First Order Higher Order Symmetry (Similarity) Methods 	6
	b.	 Systems of Linear Differential Equations Stability Diagonalization 	7
	c.	 Numerical Methods Euler and Runge-Kutta Methods Multistep Methods Boundary Value Problems 	8
	d.	 Nonlinear Differential Equations Qualitative Analysis Stability and Limit Cycles 	9
	e.	 Series Solutions Frobenius Methods Bessel and Legendre Equations 	10
III.	Pa	rtial Differential Equations	
	a. b. c.	Classification and Boundary Conditions First Order and the Method of Characteristics Higher Order PDEs - Similarity Transformations	11 12
		 Orthogonal Functions Separation of Variables Laplace Transform Methods 	12 13 14
	d.	Numerical Methods	

Week No.

- Finitie difference methods 15